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Mathematical modelling of mass transfer during osmotic dehydration 
of seedless guava (Pisidium guajava L.) cubes 

Abstract: The present work aimed to study kinetics of osmotic dehydration of seedless guava in terms of 
solid gain and water loss, which was evaluated at three sucrose concentration levels (30, 40 and 50% w/w), 
three temperature levels of osmotic solution (30, 40 and 50ºC) for 240 min. The experimental data was fitted 
to different empirical kinetic models including Peleg, Page and Azuara. Determination of coefficient (R2), root 
mean square error (RMSE) and mean relative deviation modulus (E) were used for determination of the best 
suitable model. The present work shows that the Peleg empirical model satisfactorily described the dehydration 
kinetics with the highest R2 (>0.95) and the lowest RMSE (<0.003) and E (<5.20%). Moreover, the effect 
of solution concentration and temperature was also studied and it was found that initial water loss and solid 
gain are related to solution concentration and temperature whereas equilibrium contents are related to sucrose 
concentration. From the experimental data it is possible to estimate the equilibrium content of water and solid.
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Introduction

Guava, Psidium guajava L., is originated in the 
Caribbean and common in Malaysia which has great 
amount of vitamins C (>3 of an orange vitamin C 
content), A and B.  Guava fruit, as other tropical 
fruits, is highly perishable which needs preservation 
methods to increase its shelf-life (Andrade et al., 
2007). In recent years, considerable amount of 
attention has been paid to osmotic dehydration 
technique for preservation of fruits and vegetables 
due to its potential to keep sensorial and nutritional 
properties similar to the fresh fruits (García-Martínez 
et al., 2002). Osmotic treatment has been carried out 
to partially remove water of fresh foods by immersing 
pieces of the food in a highly concentrated solution. 
This solution is referred to as a hypertonic solution in 
the literature. The potential difference between osmotic 
pressure of fresh material and surrounding solution 
provides a driving force for remove of water from 
cells (Corzo and Bracho, 2005). Mass transfer during 
osmosis process consists of two major simultaneous 
counter-current fluxes of water and solutes due to 
the fact that the complex cell wall structure is not 
perfectly selective (Madamba, 2003). Leakage of 
neglectable amount of natural solutes presents in the 
cells into osmotic solution has considered as third 
minor flux (Rastogi and Raghavarao, 2004). The 
effect of several factors like solution concentration, 

temperature, immersion time, sample size and shape, 
solution to sample ratio and applied pretreatments on 
kinetics of mass transportation have been extensively 
investigated (Rastogi et al., 2002; Panades et al., 
2008). Mathematical modelling of mass fluxes 
during the process gives invaluable information to 
have clearer understanding of dehydrated material 
composition and operational design. In this regard, 
several equations based on Fick’s second law have 
been proposed which are not useful practically due to 
the fact that some of the assumptions are unrealistic 
and complexity of the equations (Chausi et al., 
2001). Peleg (1988), Azuara (1992) and Page (1949) 
recommended simpler empirical equations including 
parameters with physical meaning. These empirical 
equations have been used to model the rate of 
dehydration of different plant-based materials (García-
Pascual et al., 2006; Schmidt et al., 2009; Khin et 
al., 2006; Mercali et al., 2010; Kaymak-Ertekin and 
Sultanoglu, 2000; Singh et al., 2007). However, in 
literature, the suitability of these equations to model 
the dehydration rate of seedless guava is scarce. The 
aim of current study were to evaluate the effect of 
temperature and sucrose solution concentration on 
mass transfer during osmosis process and to assess 
the predictive capacity of Peleg, Azuara and Page’s 
equations during osmotic dehydration of seedless 
guava.
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Materials and Methods

Preparation of seedless guava samples
Fresh seedless guava (Psidium guajava L.) fruits 

were obtained daily from a local market (Serdang, 
Malaysia). Guavas selected at commercial maturity 
according to their similarity of color, size, absence 
of surface defects and ripening grade (around 8 
ºBrix). Before each experiment fruits were washed 
and peeled. Cube-shaped guavas (20±2 mm3) were 
obtained manually by very sharp stainless steel knife, 
and then gently blotted with tissue paper to remove 
the excess of surface humidity. Guava cubes with 
the same size were selected to minimize the effect of 
sample size on the collected data. The dimensions of 
fruit cubes were measured by Mitutoyo digital caliper 
(±0.02 mm) (Mitutoyo, Waterbury, CT, USA). 

Osmotic dehydration procedure
Commercial grade sucrose mixed with 

required amount of distilled water to give desired 
concentration of osmotic solution. The sucrose 
solution concentrations were 30, 40 and 50% (w/w). 
The sucrose solution concentration was checked by 
refractometer (Atago-Master-20 M, Japan). Osmotic 
treatments were performed in temperature range of 
30-50°C using a circulating water bath (Memmert, 
WNE14. Memmert GmbH Co. KG, Germany). The 
temperature verification was done using a digital 
thermometer (Ellab CTD-85, Ellab, Denmark) 
equipped with type T constantan needle thermocouple 
(1.2 mm diameter). The ratio of sample to sucrose 
solution was always set at 1:10 (w/w). At determined 
times (15, 30, 45, 60, 90, 120, 150, 180 and 240 min), 
the guava cubes were removed from the osmotic 
solutions, rinsed quickly with distilled water (below 
30s) to eliminate the solution adhered to the surface 
and carefully blotted with tissue paper to remove the 
excess surface water. The experiments were repeated 
thrice and the average (±SD) values are reported.

Kinetics parameters Determination
The fresh and dehydrated seedless guava cubes 

after each contact times were placed in oven (Heraeus 
Vacutherm VT6025, Germany) at 105°C until constant 
weight (24 h) in order to measure the moisture and 
solids content according to AOAC method No. 
931.04 (AOAC, 1990). In order to determine mass 
change, all samples were weighed with accuracy 
of ±0.0001 g before and after treatment using an 
analytical balance (Mettler AJ 150, Switzerland). 
The following equations were applied to evaluate 
solid gain (SG) and water loss (WL) (Panagiotou et 
al., 1999).

 
                                                                  (1)
                                                                                                                   
                                                                  (2)

Where M is sample mass (g) and m is sample dry 
mass (g). Subscripts 0 and t represent values at initial 
and each sampling time, respectively.  

Peleg’s equation
Peleg (1988) suggested a two parameter equation 

to explain moisture sorption kinetics which approaches 
equilibrium asymptotically. Eq. (3) presents the 
adaptation of this equation for this study: 

Where X is dependent variable at time t, X0 is initial 
dependent variable. 

Dehydration rate at the very beginning of the 
process (t = t0) explained by Peleg rate constant or 
K1:

The relationship between equilibrium content 
(Xe) as t→∞ and the Peleg capacity constant or K2 is 
given by Eq. (5): 

Azuara’s equation
Azuara (1992) proposed a mass balance-based 

equation as Eq. (6):

               XG = XG∞ - XG* (6)

Where XG* is the mass of solid or water that did not 
enter (or leave) the sample after an elapsed time t, 
XG∞ is the concentration after long immersion times. 
As XG increases and XG* decreases during the 
immersion time, these variables can be interrelated 
by a parameter K, i.e. XG = KXG*. The K parameter 
depends on the immersion time (t) and on the rate of 
mass transfer (water or solid), as given by Eq. (7). 

The substitution of Eq. (6) into the Eq. (7) leads 
to an equation that could be used for predicting the 
mass transfer during immersion time (Eq. (8)).

                                                              (8)
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Page’s equation
Page (1949) suggested a useful modified empirical 

equation (Eq. (9)) based on simple exponential model 
which was used to fit the experimental dehydration 
data.

In which, K is the dehydration constant, n is the 
Page’s parameters and t is the process time (min).

Experimental design and statistical analysis
The experimental design applied was a 3 × 

3 × 9 factorial design in a frame of Complete 
Randomized Design (CRD), corresponding to the 
three solution concentrations, three temperatures 
and nine immersion time intervals. Statistical 
significance (p<0.05) was alnalysed through analysis 
of variance (ANOVA) using Minitab v.14 (Minitab 
Inc. State College, PA, USA). Non-Linear regression 
using Levenberg-Marquardt method was used to 
fitting database to different models by using the 
STATISTICA 6.0 software (StatSoft, Inc., USA). 
The criteria for characterizing the fitting to the model 
were the determination coefficient (R2), the root 
mean square error (RMSE) and the mean relative 
percentage deviation modulus (E). These parameters 
can be calculated as follows: 

Where Vexp and Vpre are the experimental and predicted 
values, respectively, n is the number of experimental 
data. According to Deng and Zhao (2008) a model 
with E value below than 10% is considered acceptable. 
Therefore, the best model should follow the highest 
coefficient of correlation (R2), the least RMSE and E 
values as criteria. 

Results and Discussions

Figures 1–2 show the evolution of solid and water 
contents during osmotic treatments. As expected, SG 
and WL increased with immersion time. From the 
data in figures 1-2, a clear trend of a high initial rate 
of SG and WL, and subsequent slower gain/loss is 
apparent. Similar curves for different osmotically 
dehydrated foods have been published (Eren and 
Kaymak-Ertekin, 2007; Schmidt et al., 2009; Corrêa 
et al., 2010). Previous research findings revealed 

higher amount of WL and SG in more concentrated 
solutions due to the greater osmotic pressure 
gradients (Ito et al., 2007; Ispir and Togrul, 2009). 
According to Antonio et al. (2008), a relationship 
exists between great gradient of osmotic pressure and 
loss of plasmatic cell membrane functionality which 
allows easier entrance of solute into the cells. High 
temperatures of osmotic media also cause accelerated 
mass transfer as shown in Figures 1–2. This behavior 
was more pronounced in the most concentrated 

Figure 1. Experimental SG during osmotic dehydration of seedless 
guava at different sucrose concentrations: 30% (a), 40% (b), 50% (c) and 
temperatures

Figure 2. Experimental WL during osmotic dehydration of seedless 
guava at different sucrose concentrations: 30% (a), 40% (b), 50% (c) and 
temperatures

 a 



1108 Ganjloo, A., Rahman, R.A., Bakar, J., Osman, A. and Bimakr, M.

International Food Research Journal 18(3): 1105-1110

solutions. Increase in kinetics of mass transfer at 
high temperatures can be attributed to diffusion rate 
enhancement due to swelling and plasticizing of cell 
membranes and better water transfer characteristics 
on the product surface as a result of lower viscosity 
of the osmotic solution (Uddin et al., 2004; Singh et 
al., 2007). In several studies, it has been concluded 
that cells membrane destruction at higher temperature 
lead to higher solid uptake by plant-based materials 
during osmosis treatment (Le Maguer, 1988; Sachetti 
et al., 2001; Corzo and Bracho, 2006; Tortoe et al., 
2007; Corrêa et al., 2010).

Peleg, Azuara and Page’s equations were used 
to evaluate osmotic dehydration kinetics of seedless 
guava cubes. Table 1 presents Peleg parameters under 
different experimental conditions. The k1 parameter 
of the Peleg’s model decreased with solution 
concentration and temperature elevation suggesting 
that initial rate of mass transfer increased. ANOVA 
results revealed that the value of initial mass transfer 
coefficients for SG and WL rely on the solution 
concentration and temperature significantly (p< 
0.05). The parameter k2 describes the rate of SG and 
WL at the equilibrium stage of osmotic dehydration 
process. A significant (p<0.05) relationship between 
k2  and solution concentration observed, i.e., the 
higher osmotic concentration caused lower values of 
k2 for SG and WL. 

Azuara’s equation parameter obtained for SG and 
WL are shown in Table 2. In Eq. (8), K represents the 
required time for diffusion of half of water or solid 
out/into the product, respectively. Similar trend was 
observed for Azuara’s equation parameter (K) for SG 
as the k1 parameter which decreased with the increase 
of concentration and temperature (p<0.05) whereas 
for WL the K parameter did not follow a clear pattern 
with sucrose concentration and temperature (p> 
0.05).

Table 3 presents Page’s parameters calculated for 
SG and WL under different experimental conditions. 
It results of SG revealed that parameter K decreased 
with solution concentration and temperature whereas 
parameter n did not show a clear pattern with 
temperature. In the case of WL, parameter K did 
not show any trend with solution concentration and 
temperature, while parameter n increased at higher 
concentrations and temperature. Similar findings 
were published on page model by Azoubel and Murr 
(2004) and Vega- Gálvez et al. (2009). 

The criteria which were used for qualification of 
the goodness of fit (R2, RMSE and E) revealed the 
adequacy of Peleg model to predict the values of SG 
and WL under different experimental conditions due 
to high values of R2 and small values of RMSE and 
E (Table 1-3). 

Table 1. Peleg’s parameters and goodness of fit for mass transfer during osmotic dehydration
Conc.
(% w/w)

Temp.
( ºC)

SG WL
k1 k2 R2 RMSE E (%) k1 k2 R2 RMSE E (%)

30
30 939.09±78.39 16.32±0.43 0.99 0.0003 2.91 257.49±43.08 3.85±0.22 0.97 0.002 3.96
40 612.48±55.74 17.06±0.44 0.99 0.0002 2.50 187.09±20.62 3.17±0.11 0.98 0.001 3.12
50 549.78±61.67 16.23±0.52 0.99 0.0004 3.21 148.96±20.92 2.87±0.12 0.98 0.001 3.03

40
30 412.23±78.88 15.74±0.84 0.96 0.0002 1.71 255.53±29.61 2.67±0.13 0.98 0.002 4.87
40 191.58±53.63 14.06±1.05 0.99 0.0003 1.76 183.64±19.35 2.56±0.09 0.98 0.002 4.33
50 180.86±29.94 12.89±0.57 0.97 0.0004 1.81 154.24±14.90 2.37±0.07 0.99 0.003 3.88

50
30 258.09±53.49 14.73±0.84 0.95 0.0004 2.25 166.55±18.42 2.53±0.42 0.98 0.003 5.20
40 162.56±26.39 12.61±0.54 0.97 0.0003 1.25 145.27±15.22 2.26±0.07 0.98 0.003 4.84
50 148.43±27.85 11.67±0.58 0.96 0.0003 1.35 125.27±15.88 2.06±0.08 0.98 0.003 4.42

Table 2. Azuara’s parameters and goodness of fit for mass transfer during osmotic dehydration

Conc.
(% w/w)

Temp.
( ºC)

SG WL
K R2 RMSE E (%) K R2 RMSE E (%)

30
30 0.016±0.001 0.98 0.0003 3.19 0.015±0.001 0.97 0.0020 3.94
40 0.028±0.002 0.99 0.0003 3.10 0.017±0.001 0.98 0.0019 3.39
50 0.030±0.002 0.97 0.0004 3.34 0.020±0.001 0.96 0.0020 3.36

40
30 0.038±0.001 0.99 0.0002 1.72 0.011±0.001 0.96 0.0025 5.19
40 0.073±0.005 0.99 0.0004 1.76 0.015±0.001 0.97 0.0029 4.77
50 0.071±0.005 0.98 0.0004 1.81 0.012±0.002 0.90 0.0044 6.12

50
30 0.057±0.004 0.97 0.0004 2.26 0.016±0.002 0.96 0.0039 5.69
40 0.077±0.004 0.98 0.0003 1.26 0.017±0.003 0.95 0.0036 4.33
50 0.078±0.004 0.97 0.0003 1.36 0.016±0.001 0.96 0.0034 5.23

Table 3. Page’s parameters and goodness of fit for mass transfer during osmotic dehydration
Conc.

(% w/w)
Temp.
( ºC)

SG WL
K n R2 RMSE E (%) K n R2 RMSE E (%)

30
30 5.92±0.31 0.12±0.01 0.97 0.0003 8.35 5.34±0.31 0.22±0.01 0.95 0.0021 5.62
40 5.02±0.18 0.09±0.00 0.98 0.0005 4.72 4.83±0.20 0.23±0.00 0.96 0.0007 2.08
50 4.86±0.14 0.09±0.00 0.98 0.0004 3.57 4.52±0.14 0.24±0.00 0.95 0.0006 1.45

40
30 4.56±0.19 0.08±0.00 0.96 0.0007 5.55 6.10±0.42 0.28±0.01 0.96 0.0019 5.29
40 3.75±0.16 0.06±0.00 0.93 0.0009 5.37 5.25±0.31 0.27±0.01 0.96 0.0019 4.08
50 3.70±0.12 0.06±0.00 0.96 0.0007 3.91 4.93±0.16 0.28±0.00 0.99 0.0014 2.29

50
30 4.03±0.13 0.07±0.00 0.96 0.0006 4.19 4.93±0.35 0.27±0.01 0.97 0.0024 4.78
40 3.60±0.14 0.06±0.00 0.94 0.0010 4.81 4.93±0.35 0.29±0.01 0.97 0.0026 4.65
50 3.52±0.11 0.06±0.00 0.96 0.0007 3.44 4.93±0.32 0.30±0.01 0.95 0.0024 3.79
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Conclusion

The effects of concentration and temperature on 
mass transfer kinetics were investigated in terms of SG 
and WL. The results of this investigation revealed the 
existence of a relationship between the rate of SG and 
WL and independent process variables (concentration 
and temperature). Among different applied equations, 
Peleg’s model showed the best adjustment of the 
experimental data. Peleg’s parameters k1 and k2 for 
SG were from 939.09±78.39 to 148.43±27.85 and 
from 16.32±0.43 to 11.67±0.58, respectively, and 
for WL varied from 257.49±43.08 to 125.27±15.88 
and 3.85±0.22 to 2.06±0.08, respectively. Therefore, 
the SG and WL of seedless guava at any sucrose 
solution concentration and temperature could be 
estimated sufficiently using the Peleg equation and 
consequently it can be used as a useful tool in the 
design and control of the corresponding industrial 
operation.
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